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Abstract
In this paper certain ‘fermionic’ Stirling numbers introduced recently are
discussed. Roughly speaking, these numbers are obtained by taking the
‘fermionic’ limit q → −1 of the q-deformed Stirling numbers. The usual
Stirling numbers correspond in this language to the ‘bosonic’ limit q → 1. It
is shown that the fermionic Stirling numbers are given by binomial coefficients
and that they satisfy the same relations as the undeformed Stirling numbers.
The fermionic relatives of Lah numbers are also very briefly discussed.

PACS numbers: 02.10.Ox, 05.30.Fk

1. Introduction

The Stirling numbers of second kind S(n, k) play an important role in many combinatorial
problems [1, 2] and have also appeared in the physical context of normal ordering bosonic
creation and annihilation operators [3]. For q ∈ [0, 1] certain q-deformed bosonic operators
may be introduced [4] which generalize the undeformed bosonic ones (corresponding to
q = 1). It was shown in [5] that the corresponding normal ordering problem leads to the q-
deformed Stirling numbers Sq(n, k) in the version introduced by Milne [6]. These q-deformed
Stirling numbers were introduced by Carlitz [7, 8] (in a slightly different form) and have
been discussed (in slightly varying forms) in various contexts, see, e.g., [6–14]. In the limit
q → 1 one obtains the usual ‘bosonic’ Stirling numbers, i.e., Sq=1(n, k) = S(n, k). It is also
possible to consider the case q ∈ (−1, 0) corresponding to q-deformed fermionic creation
and annihilation operators, see [15] and the literature given therein. The expression (and the
recursion relation) for the Sq(n, k) remains the same, so it is tempting to consider the limit
q → −1 as suggested in [15]. This limit will be called ‘fermionic’ since the corresponding
creation and annihilation operators are those of an undeformed fermion. Since taking the
limit q → −1 for Sq(n, k) is not straightforward (if we use the standard expression for
them given below), we define the fermionic Stirling numbers Sf (n, k) as solutions of the
corresponding recursion relation. Due to the unconventional form of this recursion relation,
we will determine Sf (n, k) in a straightforward fashion. Surprisingly, they are given by a
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single binomial coefficient (recall that the usual Stirling numbers S(n, k) can be expressed
as a sum of n binomial coefficients). In the same fashion fermionic Stirling numbers of
first kind sf (n, k) are introduced and discussed. It is shown that sf (n, k) is also given by a
single binomial coefficient. Furthermore, it is shown that the inversion relation combining
the Stirling numbers of both kinds as well as the interpretation of the Stirling numbers as
connection coefficients holds true also in this context. A similar treatment of the Lah numbers
shows that their fermionic relative is rather uninteresting. In a very recent preprint [16], some
of these questions are also discussed from a different perspective.

2. The q-deformed Stirling numbers

Let q ∈ (−1, 1]. Following [17] we introduce the standard notation

[n] ≡ [n]q = (1 + q + · · · + qn−1) = 1 − qn

1 − q

for q-deformed numbers and

[n]! ≡ [n][n − 1] · · · [2][1] [n; k] ≡ [n]!

[n − k]![k]!
(1)

for the q-factorials and q-binomial coefficients. Note that we will suppress the index q in the
following as far as possible, only displaying it when necessary. In the limit q → 1 one obtains
[n]q=1 = n. Let us point out that in the case q < 0 we may write q ≡ −q̃ with a positive q̃.
It follows that

[n]q ≡ 1 − qn

1 − q
= 1 − (−q̃)n

1 + q̃
≡ [n]Fq̃

here the last equation is the definition of the q̃-fermionic basic number appearing in recent
studies of the q̃-deformed fermionic oscillator [18–21]. Note that the limit q → −1, i.e.,
q̃ → 1, yields

[n]q=−1 = [n]Fq̃=1 = 1 − (−1)n

2
= εn :=

{
0 if n is even
1 if n is odd.

(2)

In particular, this implies for n � 2 that

[n]q=−1! = 0. (3)

The q-deformed Stirling numbers of second kind Sq(n, k) are given by (in the version of
Milne [6])

Sq(n, k) =
k∑

p=1

(−1)k−pq(k−p

2 )
[p]n−1

q

[p − 1]q![k − p]q!
(4)

where n, k ∈ N with k � n. They satisfy the recursion relation

Sq(n + 1, k) = qk−1Sq(n, k − 1) + [k]qSq(n, k) (5)

with initial values Sq(1, 0) = 0 and Sq(1, 1) = 1 (in the following we will also use the
convention Sq(n, 0) := 0). The recursion relation implies that the Sq(n, k) are polynomials
in q (although this is not obvious from (4)). In the ‘bosonic’ limit q → 1 one obtains
the usual Stirling numbers, i.e., Sq=1(n, k) = S(n, k), and their usual recursion relation
[1, 2]. Some simple examples for the q-deformed case are given by Sq(n, 1) = 1, Sq(n, 2) =
[2]n−1

q − 1, Sq(n, n) = q
n(n−1)

2 . Note that due to (3) it is not straightforward to take the limit
q → −1 in (4) (but recall that the Sq(n, k) are in fact polynomials in q; an explicit expression
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can be found in [14] and is the starting point for [16]). The q-deformed Bell numbers are
defined by Bq(n) = ∑

k Sq(n, k). Milne showed [6] that there exists a q-deformed Dobinski
relation

Bq(n) = 1

eq(1)

∞∑
k=1

[k]n

[k]!
(6)

involving the q-exponential function eq(x) = ∑∞
m=0

xm

[m]! . The q-deformed Stirling numbers
of first kind sq(n, k) satisfy the recursion relation

sq(n + 1, k) = q−n{sq(n, k − 1) − [n]qsq(n, k)} (7)

with initial values sq(1, 0) = 0 and sq(1, 1) = 1. Denoting for k � 1 the falling factorials by

[x]kq := [x]q[x − 1]q · · · [x − k + 1]q , the q-deformed Stirling numbers may also be defined as
connection coefficients, i.e.,

[x]nq =
n∑

k=0

Sq(n, k)[x]kq [x]nq =
n∑

k=0

sq(n, k)[x]kq . (8)

From this it is easy to show that the q-deformed Stirling numbers satisfy for n � m the
inversion relations (reproducing those of the ordinary Stirling numbers in the limit q → 1)

n∑
k=m

sq(n, k)Sq(k,m) = δnm

n∑
k=m

Sq(n, k)sq(k,m) = δnm. (9)

3. The fermionic Stirling numbers

The fermionic Stirling numbers of first kind are defined as solutions of the recursion relation

sf (n + 1, k) = (−1)nsf (n, k − 1) + (−1)n+1εnsf (n, k) (10)

with initial values sf (1, 0) = 0 and sf (1, 1) = 1 (we will also use the convention
sf (n, 0) := 0). The fermionic Stirling numbers of second kind are defined as solutions
of the recursion relation

Sf (n + 1, k) = (−1)k−1Sf (n, k − 1) + εkSf (n, k) (11)

with initial values Sf (1, 0) = 0 and Sf (1, 1) = 1 (we will also use the convention
Sf (n, 0) := 0). Note that (10) is the ‘fermionic’ limit q → −1 of (7) and that (11) is obtained
from (5) in the ‘fermionic’ limit q → −1. Due to the unusual form of the recursion relation,
the standard approach via generating functions [22] does not seem applicable straightforwardly
(in contrast to the case q ∈ (−1, 1] where it works directly [15]). We will instead examine
the recursion relations directly. As a first step we determine the values Sf (n, k) for maximal

and small k. They are given by Sf (n, n) = (−1)
n(n−1)

2 as well as

Sf (n, 1) = 1 Sf (n, 2) = −1 Sf (n, 3) = 2 − n Sf (n, 4) = n − 3.

Note that these results coincide with those obtained by taking the limit q → −1 for the
expressions given above. These results may be shown directly using (11), but follow also
from the general formula (15). Let us turn to the Stirling numbers of first kind. It follows
immediately from (10) that sf (n, n) = (−1)

n(n−1)

2 . Due to the factor ‘εn’ in (10) many Stirling
numbers of first kind vanish. More precisely, one has

sf (n, k) = 0 for n > 2k.
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We show this by induction over k. Let us assume that sf (n, k̃) = 0 for 1 � k̃ � k and
n > 2k̃. We now want to show that sf (n, k + 1) = 0 for n � 2k + 3. From (10) it follows that
sf (2k + 3, k + 1) = sf (2k + 2, k) − ε2k+2sf (2k + 2, k + 1). The first summand vanishes due
to the induction hypothesis, whereas the second summand vanishes due to ε2k+2 = 0. Thus,
sf (2k + 3, k + 1) = 0. This implies (via the recursion relation and the induction hypothesis)
that all sf (n, k) with n � 2k + 3 vanish, as we wanted to show. Note that this implies that
for a given n roughly the first n

2 Stirling numbers sf (n, k) vanish (a more precise statement is
given below after (17)). In the following we will also use the notation

[n]f := [n]q=−1 = εn

for the fermionic basic numbers, see (2). They satisfy [n + m]f = [m]f + (−1)m[n]f , in
particular [n + 1]f = 1 − [n]f . Although we have not defined the fermionic Stirling numbers
as limit q → −1 of the q-deformed Stirling numbers, the analogue of (8) holds true. Thus, the
fermionic Stirling numbers are connection coefficients for the fermionic basic numbers, i.e.,

[x]nf =
n∑

k=0

Sf (n, k)[x]kf [x]nf =
n∑

k=0

sf (n, k)[x]kf . (12)

Let us prove the first equation by induction over n. Let us assume that the assertion holds up
to n. Using the induction hypothesis implies that [x]n+1

f = ∑n
k=0 Sf (n, k)[x]f [x]kf . Now, we

use [x]f = [k]f + (−1)k[x − k]f to obtain

[x]n+1
f =

n∑
k=0

{Sf (n, k)[k]f + (−1)k[x − k]f Sf (n, k)}[x]kf .

Recalling [k]f ≡ εk and the recursion relation (11) yields [x]n+1
f = ∑n+1

k=0 Sf (n + 1, k)[x]kf .
Thus, the assertion is proved. The second equation is proved in a similar fashion. Note that
we have used in the proof the recursion relations of the fermionic Stirling numbers to show
that they satisfy (12). In the standard approach the q-deformed Stirling numbers are defined
as connection coefficients (8) and an argument similar to that above is used to derive the
recursion relations, see [6]. In contrast to the usual (or q-deformed) situation, the content of
(12) is rather meagre. Recall that [x]kf vanishes provided that k � 2 (since either x or x − 1
is even), so that from the first equation of (12) only [x]nf = Sf (n, 1)[x]f = [x]f remains. Of
course, this is an aspect of the fermionic nature of the situation. Since we did not define the
fermionic Stirling numbers directly as the limits q → −1 of the q-deformed Stirling numbers,
it is at first not clear whether the analogue of (9) holds true. Nevertheless, it is easy to show
that the fermionic Stirling numbers satisfy the inversion relations

n∑
k=m

sf (n, k)Sf (k,m) = δnm

n∑
k=m

Sf (n, k)sf (k,m) = δnm. (13)

Let us consider the second equation. Inserting the second equation of (12) into the first
equation of (12) yields

[x]nf =
n∑

m=0

{
n∑

k=m

Sf (n, k)sf (k,m)

}
[x]mf

from which the assertion follows. The first equation is shown similarly. Although the next
observation follows trivially from the recursion relation, it is crucial for the following to
determine the explicit values of the fermionic Stirling numbers of second kind. In the case that
k is even, (11) reduces to Sf (n + 1, k) = −Sf (n, k − 1); in the case that k is odd, it reduces to
Sf (n + 1, k) = Sf (n, k) + Sf (n, k − 1). This shows that the case of even k may be reduced to
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the case of odd k in a trivial manner. Thus, it is enough to determine Sf (n, k) for odd k. For
odd k � 3 one finds that

Sf (n + 1, k) = Sf (n, k) − Sf (n − 1, k − 2). (14)

This recursion relation involves only odd k. Let us introduce new sequences T (n, l) by
T (n, l) := Sf (n, 2l + 1). Due to the ‘scaling’ of the second argument, the new sequences
satisfy the simpler recursion relation T (n + 1, l) = T (n, l) − T (n − 1, l − 1). This may
be solved either with the help of generating functions [22] or by direct inspection, yielding
T (n, l) = (−1)l

(
n−l−1

l

)
and, therefore, Sf (n, 2l +1) = (−1)l

(
n−l−1

l

)
. Let us denote by �x� the

greatest integer less than or equal to x. In general, the fermionic Stirling numbers of second
kind are given by

Sf (n, k) = (−1)�
k
2 �

(
n − � k

2� − 1

� k−1
2 �

)
. (15)

Let us first consider the case of odd k. In this case we may write k = 2l + 1 with l = � k
2�. This

reproduces the result given above. Let us now consider the case of even k. In this case we may
write k = 2� k

2� to obtain Sf (n, k) = −Sf

(
n − 1, 2

{� k
2� − 1

}
+ 1

)
. Using now the formula

for odd k proves the asserted formula (15). The same expression (15) has been found in [16].
Having determined the fermionic Stirling numbers, it would be nice to have a convenient
expression for the corresponding fermionic Bell numbers Bf (n) := ∑n

k=1 Sf (n, k). This has
been determined in [16] and can be stated as follows:

Bf (n) =



(−1)n if n ≡ 0 (mod 3)

(−1)n+1 if n ≡ 1 (mod 3)

0 if n ≡ 2 (mod 3).

Furthermore, the exponential generating function for the fermionic Bell numbers is also given
in [16]. It is clear that taking the limit q → −1 in (6) to obtain a fermionic Dobinski relation
is not straightforward. Let us, therefore, turn to the Stirling numbers of first kind. Similar to
the case of the Stirling numbers of second kind, we consider the case of even or odd n. In the
case that n is even, (10) reduces to sf (n + 1, k) = sf (n, k − 1); in the case that n is odd, it
reduces to sf (n + 1, k) = sf (n, k) − sf (n, k − 1). This shows that the case of odd n may be
reduced to the case of even n in a trivial manner. Thus, it is enough to determine the sf (n, k)

for even n. One obtains for n = 2l that

sf (2l + 2, k) = sf (2l, k − 1) − sf (2l, k − 2). (16)

Note that this contains only even numbers as first argument. The introduction of
R(l, k) := sf (2l, k) (where 0 � k � 2l) yields the simpler recursion relation R(l + 1, k) =
R(l, k − 1) − R(l, k − 2) with solution R(l, k) = (−1)k−l

(
l

k−l

)
; note that this is valid also for

0 � k � l−1, yielding R(l, k) = 0. This shows that sf (2l, k) = (−1)k−l
(

l

k−l

)
for 0 � k � 2l.

In general, the fermionic Stirling numbers of first kind are given by

sf (n, k) = (−1)k−� n+1
2 �

( � n
2 �

k − � n+1
2 �

)
. (17)

In particular, sf (n, k) = 0 for k < � n+1
2 �. Let us first consider the case of even n. In this case

we may write n = 2� n
2 � which reproduces the result given above. Let us now consider the

case of odd n. In this case we may write n = 2� n
2 � + 1 to obtain sf (n, k) = sf

(
2� n

2 �, k − 1
)
.

Using now the formula for even n proves the assertion.
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4. The fermionic Lah numbers

It was shown in [23, 24] that in the same physical context of normal ordering bosonic
operators where the Stirling numbers appear, the (unsigned) Lah numbers L(n, k) = n!

k!

(
n−1
k−1

)
also appear. It was shown in [15] that in the corresponding q-deformed situation, the q-
deformed Lah numbers Lq(n, k) introduced in [10, 11] appear (note that in [14] a different
version of q-deformed Lah numbers is defined). These q-deformed Lah numbers are given by

Lq(n, k) = qk(k−1) [n]q!

[k]q!
[n − 1; k − 1]q (18)

and satisfy the recursion relation

Lq(n + 1, k) = qn+k−1Lq(n, k − 1) + [n + k]qLq(n, k) (19)

with initial values Lq(1, 0) = 0 and Lq(1, 1) = 1 [15]. Denoting the rising factorials by
[x]nq := [x]q[x + 1]q · · · [x + n − 1]q , the q-deformed Lah numbers may also be defined as
connection coefficients, i.e.,

[x]nq =
n∑

k=0

Lq(n, k)[x]kq . (20)

Taking the ‘bosonic’ limit q → 1 reproduces the usual Lah numbers, i.e., Lq=1(n, k) =
L(n, k). Taking the ‘fermionic’ limit q → −1 is again not straightforward, so we will instead
define the fermionic Lah numbers Lf (n, k) as solutions of the recursion relation

Lf (n + 1, k) = (−1)n+k−1Lf (n, k − 1) + εn+kLf (n, k) (21)

with initial values Lf (1, 0) = 0 and Lf (1, 1) = 1. Note that (21) is the ‘fermionic’ limit
q → −1 of (19). Although we have not defined the fermionic Lah numbers as limit q → −1
of the q-deformed Lah numbers, the equation resulting from (20) by considering q → −1 is
nonetheless true. Thus, the fermionic Lah numbers are the connection coefficients between
rising and falling factorials of fermionic basic numbers, i.e.,

[x]nf =
n∑

k=0

Lf (n, k)[x]kf . (22)

Let us prove this by induction over n. Assume that the assertion holds up to n. Since [x]n+1
f =

[x+n]f [x]nf , use of the induction hypothesis implies that [x]n+1
f = ∑n

k=0 Lf (n, k)[x+n]f [x]kf .
Since [x + n]f = [n + k]f + (−1)n+k[x − k]f , this equals

[x]n+1
f =

n∑
k=0

{Lf (n, k)[n + k]f + (−1)n+k[x − k]f Lf (n, k)}[x]kf .

Recalling [n + k]f ≡ εn+k and using the recursion relation (21) yields [x]n+1
f =∑n+1

k=0 Lf (n + 1, k)[x]kf , proving the assertion. Unfortunately, a closer look reveals that
the fermionic Lah numbers are rather uninteresting since

Lf (n, k) = δn,k. (23)

Let us prove this by induction. The assertion is trivially true for n = 1 since the asserted
values are the prescribed initial values. Let us assume that the assertion holds up to n. For
n+1 we use the defining relation (21) to express Lf (n+1, k) as a sum of two terms of the form
Lf (n, ∗). For 0 � k � n − 1 both terms on the right-hand side vanish due to the induction
hypothesis, thus Lf (n + 1, k) = 0 for 0 � k � n − 1. In the case k = n the first term on the
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right-hand side vanishes due to the induction hypothesis, whereas the second term vanishes
since ε2n = 0. Thus, Lf (n + 1, n) = 0. In the remaining case k = n + 1, the second term
on the right-hand side vanishes, whereas the first one gives (−1)2nLf (n, n) = 1 due to the
induction hypothesis. This shows (23). Therefore, the exponential generating function of the
fermionic Lah numbers is given by

Lf (x; k) :=
∑
n�0

Lf (n, k)
xn

n!
= xk

k!
.

It is interesting to compare this to the exponential generating function of the ordinary Lah
numbers L(n, k) given by

L(x; k) :=
∑
n�0

L(n, k)
xn

n!
= 1

k!

(
x

1 − x

)k

= xk

k!
(1 − x)−k.

5. Discussion

In this paper we have considered the fermionic Stirling and Lah numbers as solutions of certain
recursion relations which are obtained in the limit q → −1 from those of the q-deformed case.
Explicit expressions are given in (15), (17) and (23). Since the q-deformed case corresponds
in the associated physical situation to an interpolation between a bosonic (q = 1) and a
fermionic (in the limit q → −1) system, the limit q → −1 was called ‘fermionic’ [15]. The
commutation relations of the q-deformed fermionic oscillator introduced in [18, 19] may be
written in the form

b†
qbq − qbqb

†
q = 1

[
N, b†

q

] = b†
q [N, bq ] = −bq (24)

where N is the q-deformed number operator (see also [15]). Note that these relations
reduce in the limit q → −1 to those of the usual fermionic oscillator, except that for
b ≡ bq=−1 and b† ≡ b

†
q=−1 the relations b2 = 0 = (b†)2 do not hold. This means that

the exclusion principle does not hold in the limit q → −1. For q > −1 one has the relation(
b
†
qbq

)n = ∑n
k=1 Sq(n, k)

(
b
†
q

)k
bk

q , yielding in the limit q → −1

(b†b)n =
n∑

k=1

Sf (n, k)(b†)kbk. (25)

The creation and annihilation operators b̃† and b̃ of the usual fermionic oscillator satisfy, in
addition to the relations satisfied by b† and b, the relations (b̃†)2 = 0 = b2. This implies
that in the corresponding equation (b̃†b̃)n = ∑n

k=1 S̃f (n, k)
(
b̃†)k

b̃k the coefficients S̃f (n, k)

are arbitrary for k > 1 and may be chosen for convenience as S̃f (n, k) = 0. Note that
S̃f (n, 1) = Sf (n, 1) = 1. The limit q → −1 of the q-deformed commutation relations
(24) does not imply the exclusion principle—this has to be added. To obtain a Fock space
representation of (24), a basis |n〉q is constructed out of the vacuum |0〉q as follows [18, 19]

|n〉q ≡ 1√
[n]q!

(
b†

q

)n|0〉q .

Due to (3) one has to impose in the limit q → −1 the exclusion principle in a weak sense,
i.e., (b†)n|0〉q=−1 = 0 for n � 2 (but recall that it is not true that (b†)n = 0). This weak
exclusion principle is discussed, e.g., in [18–21]. Thus, the coefficients Sf (n, k) (obtained
from a limit q → −1) contain ‘more information’ than the coefficients S̃f (n, k) of the limit
case q = −1 where the exclusion principle holds true. The combinatorial structure of the
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fermionic case (i.e., in the limit case q = −1 together with the exclusion principle) was
already discussed in [25] for the multimode case and it would be interesting to understand in
detail how the structures discussed in [25] emerge in the limit q → −1 from the q-deformed
case, in particular their relation to the results discussed above. It was shown in [5] that (for
q > 0) the q-deformed Stirling numbers Sq(n, k) have an interpretation as expectation values
of the operators

(
b
†
qbq

)n
with respect to a Fock space basis, and it was shown in [26] that the

q-deformed Bell numbers Bq(n) give the expectation value of
(
b
†
qbq

)n
with respect to coherent

states (see also [15] for a discussion). It should be interesting to find out whether a similar
interpretation can be given for Sf (n, k) and Bf (n) (due to the weak exclusion principle this
seems to be nontrivial). From a purely mathematical point of view, it would be interesting to
find a nice combinatorial interpretation for the fermionic Stirling numbers and in particular
an interpretation for those combinations (n, k) where Sf (n, k) < 0. For first results see
[16]. The q-deformed Stirling numbers have been discussed in a combinatorial context by
several authors, see, e.g., [6, 10–14, 16]. However, it seems that taking the limit q → −1
in these considerations is not possible or at least unnatural (in the literature cited above it is
normally assumed that q � 0, [16] being an exception). Thus, one should look for an intrinsic
interpretation respecting the fermionic nature of the situation.
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